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The Ballistic Flight of a Projectile
With Two Precessional Modes

Thomas Morgan*,**
Lawrence Livermore National Laboratory
Livermore, California

Abstract

Rapidly spinning projectiles with infinite rotational sym-
metry display a bigh degree of physical correspondence to a
classical gyroscope. As with a gyroscope, such projectiles
show two precessional modes, one of which will always be
in evidence during a flight. Aeroballistic theory provides,
additionally, for two simultaneously excited nutational
modes, with sinusoidal frequencies close to, but not exactly
coincident with, the precessional angular velocities. The
combination of these two orthonormal rotations gives rise
to complex pitching and yawing motion, which can be sub-
stantially different than the motion predicted by aeroballistic
theory alone. Results from a numerical integration of the
equations of motion in their most general form illustrate
these differences.

Nomenclature

A = reference area = §

Alp = 1/2pSleC|P

AL, = 120SPV[C oo + (Ix/mP)C, ]

A, = 1/2pSPV[Cpi — (I/m)C,q]

Aq = 11281 V2Cp,

Cp = roll damping moment coefficient

Cie = lift force coefficient

Cope = Magnus moment coefficient

Chna = damping moment coefficient

Cia = static moment coefficient

I( ) = imaginary part of the indicated variable

Ir = roll moment of inertia of the projectile

It = transverse moment of inertia of the projec-
tile

1 = reference length

Ki(i=1,2) = constant indeterminate coefficients

m = mass of the projectile

M,, My, M, = components of acrodynamic moment vec-
tor in the body-fixed coordinate system

Re( ) = real part of the indicated variable

t = time :

v = magnitude of the velocity vector

o = body nutation angle

v = body precession angle

A(i=1,2) = differential equation complex eigenvalues

p = air density

] = rotation angle of body-fixed coordinates
about z-axis

w = angular velocity of the projectile

0 = angular velocity of the body-fixed

coordinate system with respect to the space
fixed coordinate system
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Introduction

In atmospheric flight mechanics, the heading angle of a bal-
listic projectile has traditionally been described with a co-
ordinate system typically well suited to 2 non-symmetrical
body, such as an airplane. In this coordinate system, two
natural axes, or degrees of freedom, immediately suggest
themselves. They are the “nose-up, nose-down” attitude,
known as pitch, and the, “nose-left, nose-right” attitude,
known as yaw. A final rotation—the total body-turn angle
with respect to Newtonian space, referred to as roll—com-
pletes the global, spherical description of position of a pro-
jectile in flight.!2 In the absence of rigorous wind-tunnel
testing, the atmospheric moments applied to a body and
their corresponding non-dimensionalized coefficients are
frequently inferred from the oscillatory behavior® of the
body as witnessed along a flight path. Certain other correc-
tions to a projectile’s acrodynamic model—such as angle-of-
attack nonlinearities and velocity-dependent, aerodynamic
coefficient slope reversal—are incorporated into the total
equation of motion prior to numerical integration. These
corrections, in effect, introduce an empirical match to the
expected behavior.

Whenever a body displays a high degree of rotational sym-
metry (not including cruciform or finned symmetry), a com-
peting coordinate description can also be used to successfully
describe a projectile’s motion along its trajectory. The sec-
ond coordinate system relies on an Eulerian rotation se-
quence resembling a commonly taught derivation of gyro-
scopic motion. The first rotation is a latitudinal variation,
known in classical mechanics as nutation; and the second
rotation, one about a longitude, is called precession. A final
rotation, spin, describes the rotation of a point on the body
from the nutational line of nodes. For simplicity, the gyro-
scopic coordinate frame may be regarded as the polar form
of the aeroballistic coordinate frame.

While it may seem that no advantage accrues from the
substitution of one coordinate system for another, the pur-
pose of the following work is to show that certain flight phe-
nomena ascribed to nonlinear or empirical effects may, in
fact, be explained with a linear model. The use of a linear
model obviates the need for empirical correction factors and
thus presents a more rigorous, dynamic description. The dif-
ference can be traced to a readily apparent feature of the
gyroscopic coordinate frame: namely, that during that phase
of motion when the nutation angle does not oscillate, the
precessional frequency can have only one of two values,
whereas during the oscillatory phase, the precession rate
varies sinusoidally about these two values.

During the oscillatory phase, the commonly published an-
alytical solution to the differential equation of motion* does
not, in fact, describe the actual flight behavior in the in-
stance of a transition from one of these stable precessional
modes to the other. Actually, during most of the period of
oscillatory nutation, the precessional frequency exhibits
strong oscillations of its own. This behavior contradicts one



of the assumptions used in arriving at the analytical solution.
The consequence of the failure of this assumption is to limit
the total amount of information available to the dynamicist
studying the trajectory.

Each aspect of the total body motion will be examined in
detail, using the gyroscopic coordinate frame. Numerical so-
lution of the equations of motion will be presented to explain
observed flight characteristics.

Theory

With reference to the coordinate system shown in Fig. 1, the
total body equations of motion have been derived’ from first
principles. In Eulerian coordinates using the rotational form
of Newton's second law, the inertial expressions are:

M, = ;6 + ((lg - Iy) ¥2c0s0 + Iné¥)sin®,  (1a)
3M, = (2l — Ig) ¥cos® — Ind) 6 + Li¥sin®, (Ib)
and

M, = Ix(¥cos® — ¥6sin® + ). (1c)

Figure 1.

The applied moments are all aerodynamic and arise from
three sources:

1. Linear aerodynamic static moments.
These moments are proportional to the sine of the total
nutation angle and are positive (as shown by Fig. 1) when
the center of pressure is located ahead of the center of
gravity and are negative otherwise. The total expression
is

M, = %szlA Cprosin® = A_sin®. 7))

In the roll axis, the roll damping moment given by Vaughn
(Ref. 1) is

M,, = %lezA Cp (¥cos® + ¢) )
= Ap (¥cosO + ).

2. Linear aerodynamic dynamic moments,
Two moments are applied about the y or tangential axis
due to the dynamic motions of the shell. They are the
Magnus moment, which is the torque applied to a body
spinning in a fluid velocity field, written

M, = %vaA Cunpa (§ + ¥c030) 5in® @
= Ap (b + ¥cosO) sind;
and the dynamic damping moment,

1

M,, = 5 VAR C,,.¥sin® = A, W¥sin®. ®)

About the x axis, dynamic damping is given by

M, = %pvmzc,,,,;é = A;6. ©)

3. Differential work moments.
Due to the acceleration of the Eulerian-coordinate
frame, a differential, acrodynamic torque is applied to
the body about all three axes (Ref. 4). Generally, this
torque is neglected in the roll axis® but is retained about
the x and y axes. Its value in those coordinate directions

M., = pVPA J& G [é + ¥cosO] sin® 0
qay 2 mlz
and
1,1 :
Mqux = EPVAI Eﬂi Cla [e] (8)

Summing all the moments about the three coordinate axes
gives the final equations of motion:

16 - AS +

(g —~ Ip) ¥2c0s0 + Ipd¥ — A )sin® =0
(@ - IRV ~ 1zd) 6 +

(¥ — AW — A, (¥cos© + $))sin® =0  (9b)
I (¥ + ¢ — ¥sin®) — Ay, (Peos® + ¢) = 0. (%)

(9a)

When the small-angle approximation is used to linearize the
above set equations, they are exactly equivalent to the polar
form of the aeroballistic equations (Ref. 6). .

For quasi-steady-state precessional motion (¢ = 0) a
closed-form solution of equations (9a—c) can be found.” The
solution is



0 = K;eM' + Kyt (10)
where
K = ARe( — Aj) _
17 Re(hy — )P+ (n(ry — )P
. AL\ — M)
TR MR + (= R (112)
-B
Kz = Re(\y — M) + (I = A))? +
. A\ — M)
'R0, = izﬁi'lf(f.ﬁi EEY) i (11b)
Ay = _2—;:5(1 *1) %7 (Apu (\FCI:SG + ¢)) -
; (ﬂ‘i’f?s_zf_l?:_‘i’_) (I;E)(mn), (11c)
T=- TR (11d)
S, = Ig?(¥cosO + )2/ 4I;A,, (11e)
A =9, - 6, (Re(\)), (116)
and
B = eo (Im()‘l - )‘2)2) -
(6, ~ 6, ReMDNRE(A; — A)). (11g)

However, efforts to modify the aerodynamic coefficients by
matching the analytical solution with observed flight dynam-
ics must not be undertaken lightly. For instance, it is a trivial
exercise to evaluate the precessional motion when the nu-
tational motion is a known, explicit function. First, the har-
monic effects of nutational angle due to the slow frequency
are assumed to be small compared to those of the fast fre-
quency. Then, the results are substituted back into the equa-
tions of motion [equations (9a—)].

But if © is in fact harmonic, its derivative is also harmonic,
which implies [from equation (9b)] that the precession rate
must be harmonic. However, the presence of an harmonic
precession angle contradicts one of the underlying assump-
tions (¢ = 0) that led to the analytical solution. Circum-
venting this quandary requires knowledge of the exact na-
ture of the precessional modes and the extent of their
sinusoidal damping. For this reason, two distinct phases of
a projectile flight—oscillatory and non-oscillatory nuta-
tional motion—will be treated independently.

Discussion

Non-Oscillatory Motion: Constant Density, Constant
Velocity.

If the terms § = © = © = 0 are substituted into equations
(9a) and (b), the expressions reduce to

(g — 1DV + I d¥ ~ A, =0 (12a)
- AY — A, (Wcos® + ¢) = 0. (12b)

Equation (12a) is a simple quadratic with solution

(13)
1 e e e
* s VIRE TR TR A,

Equations 12(a) and 12(b) show precisely the two preces-
sional modes predicted by classical gyroscopic theory.? Now,
solving equation (12b) in terms of © gives

oo (2 3)

When the fast processional motion is excited, the ratio of
the spin rate to the precession rate for most ballistic shells is
about 10. This is approximately the same value as for the

(14)

_ratio of aerodynamic coefficients —9- - Hence, a solution for

A

the argument of the arc cosine is oft';n available, which leads
to the observation of a steady-state, circular coning motion
at the predicted angle. On the other hand, if slow-mode con-
ing is excited, the ratio of the angular motions is usually
greater than 100. Now that the argument of the arc cosine
term exceeds 1, no coning motion is possible because the
expression is indeterminate. (For the purpose of definition,
the existence of fast precession coning at a constant nutation
angle will be referred to as “limit cycle motion.”)

To display this phenomenon more clearly, a numerical in-
tegration of the total equations of motion in their most gen-
eral form [from equations (92—c)} has been performed. For
illustration purposes, the atmospheric density and the shell
velocity are held constant. The initial conditions and applied
acrodynamic moments for this simulation are given in
Table 1. The results are plotted in Figs. 2 through 5. The
following conclusions can be drawn from an examination of
these plots:

1. The precession angle oscillates strongly about the mean
value of the “slow” precession rate until it reaches the
“fast” rate, at which point the oscillations quickly damp
to zero. Such motion violates the assumption used to ar-
rive at the analytical solution in this case.
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Table 1. Initial Conditions for Numerical Integration of Transonic CDCV Simulation.

Figures $ v lR l-r 9., 9.,
No. (rad/sec) (rad/sec) (slug-ft?) (slug-ft?) (Degrees) (radisec) A, A,
2-5 618 .10 0.1 1.0 10 0.1 0.66 0.050
7-10 618 10 0.1 1.0 10 0.1 0.66 0.025

PRECESSION RATE FUR CONSTANT DENGITY CONSTANT VELOCITY FLIGHT
BT PRECEGSION fiPWe.0S0 AQe. @5 ALP=G,00 ANSGZL. 00
LINERR AERUDVIWNIC MODEL

MUTATION RATE FOR CONWTANT DENGITY CONGTANT VELOGITY FLIGHT
PFRECESSION APA=, 050 NG=, 88 ALF=0.00 AG21.00 .
LINEAR AERTDYNANIC MODEL

120

100

CRADIANG/GED)
3

8 4 R KB 9 & R
TINE CSECOADS)
Figure 4.

15k

SPIN RATE FOR COWSTANT DENGITY CONSTANT VELOCITY PLIGHT
T T T T T T A o .

PRECERGION APA, 050 AGw.66 ALP~0.00 AR=G2L.00
LINEAR AERCOYNANIC MODEL

MUTATION ANGLE FUR CIRGTANT DRNGLTY CONETANT UELOGITY FLIGHT

r

SRADING-BEC)
8

80 |
Ew
"
g ot
S20 |
S00 B
Y - ) A 't A A . A (1 2 A
e = 2 4 8 ¥ R KR 7 ¥ R g8 8
TIRE (SECONDE)
Figure 5.

results that generated these plots, ©; = 0.22 rad., ¢; =
598 rad/sec, and WV = 48.9 rad/sec. The final limit cycle
motion is shown in Fig. 6.

Now by manipulation of one of the aerodynamic vari-
ables, A,,, the reverse can be made to happen. When the
initial value of this variable is halved, the plots show a dif-
ferent character. Instead of being undamped in precessional

2. The oscillations in nutation angle damp rather quickly
and occupy only a fraction of the usual ballistic flight
time. Hence, non-oscillatory motion is the usual condi-
tion.

3. The valuc of final nutation angle is exactly the solution
predicted by equation (14) when the motion is allowed to
continue to its full development. From the listing of the



oscillations, the solution shows moderate damping behavior.
But during the non-oscillatory portion of the flight, limit
cycle motion is not observed. The results of the numerical
integration are given in Figs. 7 through 10.

Predicting that the limit cycle motion of Figs. 2~6 can be
achieved with only the linear form of the aerodynamic slope
coefficients is impossible given only the aeroballistic for-
mulation. The state of the precessional motion is also re-
quired to give the instantaneous nutation history.

Oscillatory Motion: Constant Density, Constant Velocity.

Reexamining Figs. 2 through 9 for those portions of the
traces where the nutation angle varies harmonically, the two
frequencies predicted by equation (9) are apparent. In
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Fig. 2, the mean nutation angle decays rapidly toward zero,
while the oscillations about the mean value grow rapidly
with time up to about 4 s. At this point, the oscillations begin
to damp, but the mean value grows with time. It must be
reiterated that these figures use a constant-density, constant-
velocity (CDCV) simulation, but nonetheless, damping
coefficients appear to be radically different at different
points in the flight. An investigation of Fig. 4, on the other
hand, shows that, at the same time the transition from
damped to undamped nutational oscillations occurred, the
precessional motion switched from unstable, slow precession
to stable, fast precession.

When the analytical solution is plotted, the motion ap-
pears quite at odds with the actual solution, though. In
Fig. 11, the sinusoidal envelope of the analytical nutation
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angle grows exponentially throughout the flight period. Spe-
cifically, the analytical solution and the actual solution are
widely divergent after the precessional mode transition. At
t = 4.0s, when the transition occurs, the constant precession
rate assumption is violated, which leads to this significant
error in the analytical solution. In the aeroballistic solution,
however, nonlinear aerodynamic effects—especially those
associated with high angles of attack—are invoked to pro-
vide an empirical correction to the observed motion.

Ballistic Flight Simulation.

Incorporating the equations of motion in their most general
form into a six degree-of-freedom trajectory model relaxes
the assumption of constant density, constant velocity flight.
Now, solving the equations of motion numerically gives a
true picture of actual flight motion. The prototype aerody-
namic model will be drawn from a general Army research
shell, the M549, which is a 155-mm (6-in) caliber projectile.
Its mass is 2.98 slugs. The aerodynamic model, non-dimen-

sionalized to 2'—%, is given in Table 2. The initial launch con-

ditions are shown in Table 3. One point should be noted
about the aerodynamic model: while all of the aerodynamic
coefficients are linear with respect to angle of attack, the
Magnus moment coefficient reverses sign at a Mach number
of 0.85. The Magnus moment arises from the force applied
on a spinning cylinder moving through a viscous fluid at non-

transonic flight regime in a manner similar to the equivalent

shift of an airfoil’s aerodynamic center from the quarter to

the half-chord point at M=1.0. Because of the additional

downwash component due to the shell’s rotational motion,

the transition occurs at a slower velocity. Whether this same
TUTAL COIFLEN NUTATTON ANELE ANALYTTCAL SOLUTTIN

v v Yy Y T T T LA S
ST ANPA=, 050 /0=, G40 ,A=ER1. ALP=(.0

zero angle of attack. Its aerodynamic center moves in the Figure 11. T
Table 2. M549 Aerodynamic Model (Linear).
Mach
Number CA Cla Cma Cm& Crnpu Clp
0.00 0.119 1.495 3.701 - 1.10 —1.788 —-0.0280
0.45 — — — - 1.10 —1.788 —_
0.60 -— — — —11.00 — _
0.70 0.119 1.495 3.713 ~12.00 —~1.788 —
0.80 0.121 1.444 3.988 —16.50 —0.837 —
0.85 0.119 1.444 4.188 — 0.837 —_
0.89 0.131 —_ — — — —
0.90 — 1.444 4.469 —20.80 1.071 —
0.91 0.147 —_ — — -_— —
0.92 — 1.392 4,548 — 1.192 —_
0.93 — —_ - —_ — —0.0280
0.94 0.173 _ — — —_ —
0.95 — 1.495 4.698 - 1.432 —
0.96 - — — — —_ -0.0274
0.97 — 1.650 4.435 —_ —_ -
0.98 0.257 — — — — —
1.00 0.299 1.805 4.085 ~23.50 1.071 -~0.0272
1.05 0.328 1.908 3.759 — 1.071 —0.0266
1.10 0.335 2.011 3.736 -25.00 0.957 -0.0260
1.20 0.327 2.114 3.707 — 0.837 —
1.25 — — — —_— — ~-0.0250
1.30 — — — —26.00 -_— —
1.40 0.3090 2.217 3.575 — 0.957 —_
1.50 — —_ — — — -0.0238
1.60 0.291 2.269 3.507 -27.00 1.07M —
1.70 — — —_— —_ — —0.0234
1.90 — —_ _ — —0.0228
2.20 0.237 2217 3.249 — 1.192 —
3.90 0.176 2.063 3.117 ~28.00 1.432 -
4.00 — — —_ _— -0.0216




slope reversal exists at the same velocity for both slow and
fast precessional motions is an important, but difficult, ques-
tion to resolve because the Magnus moment itself is a key
index in determining the precessional mode. Also of bearing
is the state of the nutational oscillations at the time the shell
enters the transonic point.

Two different types of flights will be examined by this
simulation: fully supersonic and transonic. Utilizing the tra-
jectory model on a CDC-7600 computer with an integrating
algorithim® developed by the Lawrence Livermore National
Laboratory’s Mathematical Department, the supersonic
simulation is presented first in Figs. 12-17. For the initial
conditions given in Table 3 and the aerodynamic model
shown in Table 2, it is apparent that the normal precessional
mode is the slow one. When the nutational variations are
examined on an expanded time scale (Fig. 16), the two eigen
frequencies of nutational motion are still evident in ©. By
t = 5.0 s, all nutational oscillations have decayed to zero;
11 s elapse before the precessional oscillations have damped
out. However, as shown in Fig. 17, the Mach number does
not approach the point where the Magnus coefficient re-
verses slope, att = 5.0 s indicating that the nutational damp-
ing is not due to nonlinearities in the aerodynamic model.
The other point of interest is that there is a very slight dif-
ference between the frequencies of ¥ and those of 6. Nu-
merically this difference is the same as that between the nu-
tational eigen frequencies predicted by equation (9) and the
steady-state precessional modes predicted by equation (13).
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The difference leads to a beat frequency in the modulation
envelope of . In Newtonian space, this beat frequency can
be thought of as the slow rotation of the minor axis of an
ellipse resulting from the combination of nutation and
precession oscillations at almost, but not exactly, the same

~ frequency.
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Table 3. Initial Conditions for Ballistic Trajectory Simulation.
Launch
Elevation Site Elevation . . .
Figures Mach Angle (Fect above o o ) v Crpa
No. No. (Degrees) mean sea level) (degrees) (radfsec) (rad/sec) (rad/sec) (model)
12-17 2.5 53 928 10 0.1 1570 200 M549
18-22 0.99 53 928 10 0.1 628 10 M549
23-27 2.5 53 928 10 0.1 1570 200 0.5 x M549
28-31 0.99 53 928 10 0.1 628 10 0.5 x M549
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Resulits of the transonic simulation are provided in Figs.
18 through 22. Once again, the fast mode was asumed as an
initial condition, but the precession rate quickly decayed to
the slow mode.

From Fig. 18, it is obvious that the oscillatory damping of
the nutation angle is similar to that in Fig. 2. But the actual

damping begins long after the onset of Magnus slope coef- .

ficient reversal, which, from Fig. 22, occurs at't = 5.0 s.
Examination of the nutation rate plots of Figs. 15 and 3,
however, reveals important differences in the ballistic model
and the CDCV model. The damping of nutational oscilla-
tions is widely attributed to the nonlinearities in the Magnus
velocity profile in the aeroballistic development. Clearly,
this cannot explain the features of Fig. 18,

A certain type of M549 has been modified with a new
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rotating band. The proposed aerodynamic model for this
shell includes a doubling of the Magnus slope coefficient
while all other variables are kept approximately the same.
A simulation of the modified shell is provided in Figs. 23—
27. In these figures, the nutation rate is little affected by the
Magnus moment change. But there are subtle differences in
the nutation angle. In the expanded time scale of Fig. 27,
the oscillatory component is essentially well-damped from
t = 0 until it disappears. In Fig. 16, the oscillatory envelope
showed growth and then subsequent decay between t = 0
and t = 5.0 s. In Fig. 27, sinusoidal variations decay mon-
otonically. The next most salient feature of the motion is that
the fast precession rate remains excited throughout the
flight. Oscillations around the precession rate persist, and
the beat frequency is clearly present.
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Utilizing the same model to generate a similar set of plots
for transonic flight, one finds an entirely different form of
motion. The results are given in Figs. 28-31. Now the nu-
tation grows rapidly after 10 or 15s. (Beyond a total nutation
angle of 20° the results are undoubtedly invalid due to aero-
dynamic stall, but the integration was allowed to continue
to provide an assessment of the rapidity of the angular
growth.) Recall that the analytical model describing only the
oscillatory portion (up to 16 s) of the flight would not predict
this catastrophic growth.
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Experimental Comparison: Gyroscopic Model.

Four projectiles with aerodynamic and mass characteristics
considered to be a ballistic match to the M549 were flown
with a body coordinate-sensing device known as a “strain-
sonde™.'” In addition each projectile carried a solar-aspect-
angle sensing device called a “yawsonde.”!!

The initial launch conditions most closely matched those
of Figs. 23-27. The strainsonde, as the name implies, was a
strain gauge mounted to sense acceleration along the radial
axis of a body. No contribution due to longitudinal motion
was expected. The strainsonde had a low-end transmission-
frequency cutoff of 5 Hz and a upper cutoff of 500 Hz. Sig-
nals were transmitted continuously from the time of muzzle
exit until ground impact downrange.

As a counterpoint to the strainsonde, the yawsonde re-
corded motion with respect to Newtonian-fixed space (the
motion of the sun was assumed to be small during the flight
time). If a suitable coordinate transformation exists between
the Z-axis of Fig. 1 and the alti-azimuth solar direction vec-
tor (this transformation is usually taken to be the vector dot
product of the velocity vector and solar direction vector),
then any vector expressed in Eulerian space can casily be
transformed into Newtonian space, allowing a comparison
of yawsonde and strainsondc data.

In this case, the coordinate transformation provides a
change of basis for the Eulerian rotation-rate vector. In ma-
trix form,

Wy, cos ¥ —cosOsin¥  sinQsin¥ o,
wy | = |sin¥  cosOcos¥ —sinOcos¥ | | wy, | * (15)
0 sin€®) cos€) Dy

Substituting the angular velocity componcnts in Eulerian
vector space, @y, = O. @y, = V¥ sin O, @y, = ¢ +W¥cosO,
into equation (15), one obtains

w,,, = $ sinOsin¥ + O cos¥ (16a)
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~ ¢ sin® cos¥ + O sin¥

(16b)

Figure 32 shows the spectral development during actual
flight of various rigid-body excitation modes in body-fixed
strainsonde coordinates for one typical shell.!2 Each experi-
mental spectral cut is taken at a 1.6 s time interval com-
mencing simultaneously with gun exit. The resulting three-
dimensional presentation is called a “waterfall” plot. Two
closely spaced high frequencies, 224 and 251 Hz, predomi-
nate at t=0. It may seem at first that these frequencies are
the spin and fast eigen nutation frequencies because the fast
precession frequency and fast eigen nutation frequency are
almost identical. Distinguishing one from the other in the
spectral record would appear difficult. But if there is any
variation in the radius vector from the center of spin to the
strain gauge (almost certainly the case except for the highly
unlikely possibility that the geometric axes and the principal
axes are exactly coincident), then the product of the har-
monic precessional variations and the spin modulation will
have a frequency of & —~ W. Alternatively, if the strain gauge
measured centripetal acceleration modulations due to a
change in the radius vector from the precessional center of
rotation r = © - (z, ~z.,)]. the variations would be the
square of the harmonic precessional term, which has spectral
content at 2¥. Since the second major peak in the data re-
cord occurs at ¢ -~ W, it seems likely the second major peak
can be associated with precessional motion.

A further corroboration is shown when the Fourier mag-
nitude of the spectral content is examined. In Fig. 32, the
magnitude exists almost undiminished throughout the flight
at the frequency ¢ — V. But the yawsonde record and the
numerical simulation both show that the nutational oscilla-
tions have damped to zero after 10 s. However, the numer-
ical simulation predicts that precessional oscillations will
persist for the entire length of the flight. Close inspection of
the waterfall piot shows that a frequency resembling the 2¥
frequency appears at first but decays shortly into the trajec-

tory.
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Figures 33 and 34 are the equivalent yawsonde plots for  at least 265 Hz at t=0. From the waterfall plot b (g = 251
the same flight. Unfortunately, transmission of data for Figs. Hz and ¥ ,_, = 24.6 Hz. Using equation (16c),
33 and 34 did not begin until several seconds after gun exit, ‘i’NEWT = 265 = 251 cosB, + 24.6, and O, = 15°.

5o it is impossible to know the exact initial condition of the
projectile. But, from Fig. 34, the total Newtonian spin rate  This value is not very different than observed values for the

is well above 260 Hz at first transmission and was probably  initial nutation angle.
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example of a yawsonde trace in which the initial conditions

No strainsonde data exist for transonic trajectories, but a
closely match those of Figs. 18-22.

number of yawsonde traces are available. Figure 35 is an
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Figure 36 shows the equivalent simulation analysis trans-
posed into Newtonian vector space by the matrix operation
shown in equation (15). A comparison of the two results
shows good agreement with the model. (The slow change in
the experimental baseline result is due to a continual change
in elevation angle as the shell follows its trajectory.)

MUTATION RATE FUR BALLISTIC FLIGHT NEWTDMIAN CIRRDINATER
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A reinspection of Figs. 18~22 reveals that the slow fre-

. s
] ¢

quency oscillation after t=20 s is not due to dynamic -

changes in the nutation angle. Instead, it arises from a re-
casting of the polar circular coning motion into a rectangular
coordinate description. But the state of the coning frequency
affects this result in both frequency and limit cycle motion
and will change the growth characteristic of the envelope.
As an illustration of this point, the Magnus slope coefficient
was doubled in the simulation and plotted in Fig. 37. Equiv-
alent Euler space results are those shown in Figs. 28-31.
From equation (11c), (the analytical solution), it is not clear
that changing the Magnus slope coefficient should change
the frequency in any way, but this is exactly the result ob-
served in the simulation.

14

Conclusions

An alternative to the aeroballistic coordinate description of
projectile motion has been provided. When compared with
actual flight data, thcory and experiment show good agree-
ment. On the other hand, the new results provide explana-
tions for some motions not addressed by the aeroballistic
solution and show wherc the analytical results fail to prop-
erly match numerically integrated results.
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